940=-16x^2+1800

Simple and best practice solution for 940=-16x^2+1800 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 940=-16x^2+1800 equation:



940=-16x^2+1800
We move all terms to the left:
940-(-16x^2+1800)=0
We get rid of parentheses
16x^2-1800+940=0
We add all the numbers together, and all the variables
16x^2-860=0
a = 16; b = 0; c = -860;
Δ = b2-4ac
Δ = 02-4·16·(-860)
Δ = 55040
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{55040}=\sqrt{256*215}=\sqrt{256}*\sqrt{215}=16\sqrt{215}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-16\sqrt{215}}{2*16}=\frac{0-16\sqrt{215}}{32} =-\frac{16\sqrt{215}}{32} =-\frac{\sqrt{215}}{2} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+16\sqrt{215}}{2*16}=\frac{0+16\sqrt{215}}{32} =\frac{16\sqrt{215}}{32} =\frac{\sqrt{215}}{2} $

See similar equations:

| –2(u+8)+–4=–8 | | 3x-(8-2x)=7 | | -5(4-0.2x)=(2x+1) | | -9m-13m=20 | | 100f-f=99f | | 9x-2=5x+7 | | -2(4x-7)=-70 | | -3x+7-3=-31 | | x^2-6x=-15/6 | | 7/8=v+4 | | 3x-5+40+2x=180 | | 3(g-11)=12 | | 3x+9=54 | | 160.50+2m=335.50 | | x^2=15/2 | | 6x-5+7x=60 | | 55=6x+5x | | 4x+8-3x+84921=84930 | | 2/3w+6=1/3(2w+18) | | 5x+2-6x-10=x+84 | | -2/3x-1/4x=22 | | –2(d−9)=–2 | | -2w/9=4 | | 4x+8-3x+84921=84929 | | 3(12x+5)=36x−9 | | 2(y+3)=9y-43 | | 157-y=23 | | 3(s+20)−–14=17 | | -18+20x=20 | | 16=x/4-11 | | 4(z-15)=12 | | 6x-5x=28-18 |

Equations solver categories